Refine Your Search

Topic

Author

Search Results

Technical Paper

Coatings for Improving Engine Performance

1997-02-24
970204
Thermal barrier coatings are becoming increasingly important in providing thermal insulation for heat engine components. Thermal insulation reduces in-cylinder heat transfer from the engine combustion chamber as well as reducing component structural temperatures. Containment of heat also contributes to increased in-cylinder work and offers higher exhaust temperatures for energy recovery. Lower component structural temperatures will result in greater durability. Advanced ceramic composite coatings also offer the unique properties that can provide reductions in friction and wear. Test results and analysis to evaluate the performance benefits of thin thermal barrier coated components in a single cylinder diesel engine are presented.
Technical Paper

Cummins–TARADCOM Adiabatic Turbocompound Engine Program

1981-02-01
810070
This paper describes the progress on the Cummins-TARADCOM adiabatic turbocompound diesel engine development program. An adiabatic diesel engine system adaptable to the use of high performance ceramics which hopefully will enable higher operating temperatures, reduced heat loss, and turbo-charged exhaust energy recovery is presented. The engine operating environments as well as the thermal and mechanical loadings of the critical engine components are covered. Design criteria are presented and techniques leading to its fulfillment are shown. The present shortcomings of the high performance ceramic design in terms of meeting reliability and insulation targets are discussed, and the needs for composite designs are shown. A ceramic design methodology for an insulated engine component is described and some of the test results are shown. Other possible future improvements such as the minimum friction-unlubricated engine through the use of ceramics are also described.
Technical Paper

DIRECT UTILIZATION OF CRUDE OIL AS A FUEL FOR HIGH-SPEED DIESEL ENGINES

1975-02-01
750762
Crude oils with a wide range of properties were investigated for direct use as fuel in U. S. Army high-speed four-cycle diesel engines. Crude oil properties were divided into two groups; 1. those properties which would be of importance for short-term operational effects, and 2. those properties whose effects would manifest during longer-term operation. Effects of crude oil use on engine subsystem hardware such as fuel filters and fuel injection pumps were investigated. Performance and combustion data were determined using pre-cup and direct injection configurations of the single cylinder CLR diesel engine operating on various crude oils. Performance data, wear and deposition effects of crude oil use were obtained using the TACOM single cylinder diesel engine. Results of this investigation showed that a wide range of crude oils with proper selection and pretreatment are feasible emergency energy sources for U. S. Army four-cycle high-speed diesel engines.
Technical Paper

Ceramics in Heat Engines

1979-02-01
790645
Recent developments of high performance ceramics have given a new impetus for the advancement of heat engines. The thermal efficiencies of the Otto, Diesel, Brayton and the Stirling cycle can now be improved by higher operating temperatures, reduced heat loss, and exhaust energy recovery. Although physical and chemical properties of the high performance ceramics have been improved significantly, they still fall short of meeting the requirements necessary for application and commercialization of advanced heat engine concepts. Aside from the need for greater strength, the problems of consistency, quality, design, material inspection, insulative properties, oxidation and other important features must be solved before high performance ceramics can be considered a viable material for advanced heat engines. Several approaches in developing an adiabatic engine design in the laboratory are shown.
Technical Paper

Performance of a Ceramic Rotor in a Cummins T46 Turbocharger

1984-02-01
840014
This paper documents the successful operation of a modified Cummins T46 turbocharger with a ceramic rotor. This turbocharger is modified to incorporate a 4.6 inch diameter ceramic turbine rotor (pressureless sintered silicon nitride) on the hot end. These results document the most complete ceramic turbine rotor performance map, for a large ceramic turbocharger rotor, available to date.
Technical Paper

Cummins/TACOM Advanced Adiabatic Engine

1984-02-01
840428
Cummins Engine Company, Inc. and the U.S. Army have been jointly developing an adiabatic turbocompound engine during the last nine years. Although progress in the early years was slow, recent developments in the field of advanced ceramics have made it possible to make steady progress. It is now possible to reconsider the temperature limitation imposed on current heat engines and its subsequent influence on higher engine efficiency when using an exhaust energy utilization system. This paper presents an adiabatic turbocompound diesel engine concept in which high performance ceramics are used in its design. The adiabatic turbocompound engine will enable higher operating temperatures, reduced heat loss, and higher exhaust energy recovery, resulting in higher thermal engine efficiency. This paper indicates that the careful selection of ceramics in engine design is essential.
Technical Paper

Relationships Between Exhaust Smoke Emissions and Operating Variables in Diesel Engines

1977-02-01
770718
The study relates air/fuel ratio, fuel injection timing, and engine speed to exhaust smoke levels and performance of the diesel engine. Additional data were obtained under supercharged and turbocharged inlet air conditions to investigate the applicability of the derived relationships under these conditions. Limited data using a variance in fuel type were obtained. Insight into the basic mechanism of smoke formation in diesel engines was gained. The relative percentages of fuel injected before ignition (i.e., premixed fuel) and after initiation of combustion (i.e., unmixed diffusion burning fuel) were found to be extremely significant in determining smoke levels. A smoke factor (the ratio of equivalence ratio in the combustion chamber at initial ignition to overall equivalence ratio) was formulated and found to be useful in predicting smoke phenomena in diesel engines.
Technical Paper

Development of Advanced High-Temperature Liquid Lubricants

1988-02-01
880015
Future U.S. Army low heat rejection (LHR) diesel engines will operate with oil sump temperatures higher than 350°F and cylinder wall temperatures (at the top ring reversal position) which may reach 1100°F. None of the synthetic lubricants which have previously been evaluated in LHR engine prototypes are able to function for long in such a severe thermal/oxidative environment. Work is being performed for the U.S. Army on development and evaluation of new high temperature diesel engine lubricants. The most significant result of this work has been the development of a low cost liquid lubricant which exhibits high temperature performance superior to the best previously developed LHR engine lubricant in all respects: deposit-forming tendencies, stable life under high temperature oxidative conditions, and friction and wear properties.
Technical Paper

Engine Component Design Methodology for Ceramic and Ceramic-Matrix Composite Materials

1988-02-01
880193
In the past two years, significant progress has been made in the application of ceramic-matrix composite materials to low heat rejection engine components. However, past R&D programs have identified a number of critical areas which require additional effort including: Life Prediction Methodology, Non-Destructive Testing, Design Methods, Data Base Development, and Verification of Design Rules. This paper discusses an integrated design methodology for addressing these research needs. The paper concludes with a specific example of a ceramic fiber-reinforced metal matrix composite piston which has been designed for application to advanced adiabatic engines.
Technical Paper

Thin Thermal Barrier Coatings for Engines

1989-02-01
890143
Contrary to the thick thermal barrier coating approach used in adiabatic diesel engines, the authors have investigated the merits of thin coatings. Transient heat transfer analysis indicates that the temperature swings experienced at combustion chamber surfaces depend primarily on material thermophysical properties, i.e., conductivity, density, and specific heat. Thus, cyclic temperature swings should be alike whether thick or thin (less than 0.25 mm) coatings are applied, Furthermore, thin coatings would lead to lower mean component temperatures and would be easier to apply than thick coatings. The thinly-coated engine concept offers several advantages including improved volumetric efficiency, lower cylinder liner wall temperatures, improved piston-liner tribological behavior, and improved erosion-corrosion resistance and thus greater component durability.
Technical Paper

Performance Assessment of US. Army Truck with Adiabatic Diesel Engine

1989-02-01
890142
An investigation into the fuel economy of a U.S. Army M813 5-ton truck with an “adiabatic” (uncooled) 14 liter (855 in3) diesel engine was made with three different driving schedules. The results were used to verify a newly written vehicle simulation. This simulation was used to compare the fuel economy of an uncooled turbocharged engine, a water cooled turbocharged engine, and a water cooled naturally aspirated engine in the same vehicle. Results indicate that, depending on the duty cycle a 16% to 37% improvement in fuel economy (depending on the duty cycle) can be achieved with an uncooled engine in this vehicle.
Technical Paper

Laboratory Development and Engine Performance of New High-Temperature Diesel Engine Lubricants

1989-02-01
890145
New high-temperature lubricants are being developed for future U.S. Army low heat rejection diesel engines. Compared to the best previous low heat rejection diesel engine lubricant, the first new lubricant developed was shown to (1) be less volatile, (2) have 55°C (100°F) greater oxidative stability, and (3) increase high-temperature single cylinder engine life more than five times. The new lubricant successfully completed a 400 hr multicylinder engine test in a U.S. Army 5-ton truck adiabatic engine. Lubricant property changes, engine wear, deposits and oil consumption were all very low. Two additional new liquid lubricants were developed for operation at higher engine temperatures than those of the 5-ton truck. Engine tests of these new lubricants will be conducted in the near future. Hybrid liquid/solid lubricants were formulated and evaluated for potential reduction of wear and friction at high temperature, with mixed results.
Technical Paper

Adiabatic Engine Trends-Worldwide

1987-02-01
870018
Since the early inception of the adiabatic diesel engine in 1974, marked progress has taken place as a result of research efforts performed all over the world. The use of ceramics for heat engines in production applications has been limited to date, but is growing. Ceramic use for production heat engine has included: combustion prechambers, turbochargers, exhaust port liners, top piston ring inserts, glow plugs, oxygen sensors; and additional high temperature friction and wear components. The potential advantages of an adiabatic engine vary greatly with specific application (i.e., commercial vs. military, stationary vs. vehicular, etc.), and thus, a better understanding of the strengths and weaknesses (and associated risks) of advanced adiabatic concepts with respect to materials, tribology, cost, and payoff must be obtained.
Technical Paper

Tribological Systems for High Temperature Diesel Engines

1987-02-01
870157
The U.S. Army Tank-Automotive Command is developing a future high power, low heat rejection military diesel engine. Performance requirements for the engine result in a predicted cylinder wall temperature of 560°C at the top piston ring reversal location. Thermal stresses imposed on the lubricant will therefore be unusually severe. Midwest Research Institute is developing the tribological system for this engine. A new general concept for high temperature diesel engine lubrication has been formulated. Our concept includes advanced synthetic liquid lubricants, solid lubricant additives, and self-lubricating materials. The lubricants, additives, and materials that have been selected for initial laboratory and engine evaluations of the concept are reported here.
Technical Paper

High Pressure Fuel Injection for High Power Density Diesel Engines

2000-03-06
2000-01-1186
High-pressure fuel injection combustion is being applied as an approach to increase the power density of diesel engines. The high-pressure injection enables higher air utilization and thus improved smoke free low air-fuel ratio combustion is obtained. It also greatly increases the injection rate and reduces combustion duration that permits timing retard for lower peak cylinder pressure and improved emissions without a loss in fuel consumption. Optimization of these injection parameters offers increased power density opportunities. The lower air-fuel ratio is also conducive to simpler air-handling and lower pressure ratio turbocharger requirements. This paper includes laboratory data demonstrating a 26 percent increase in power density by optimizing these parameters with injection pressures to 200 mPa.
Technical Paper

Advancements in High Temperature Cylinder Liner and Piston Ring Tribology

2000-03-06
2000-01-1237
The high temperature tribology issue for uncooled Low Heat Rejection (LHR) diesel engines where the cylinder liner piston ring interface exceeds temperatures of 225°C to 250°C has existed for decades. It is a problem that has persistently prohibited advances in non-watercooled LHR engine development. Though the problem is not specific to non-watercooled LHR diesel engines, it is the topic of this research study for the past two and one half years. In the late 1970s and throughout the 1980s, a tremendous amount of research had been placed upon the development of the LHR diesel engine. LHR engine finite element design and cycle simulation models had been generated. Many of these projected the cylinder liner piston ring top ring reversal (TRR) temperature to exceed 540°C[1]. In order for the LHR diesel to succeed, a tribological solution for these high TRR temperatures had to be developed.
Technical Paper

Injection Characteristics that Improve Performance of Ceramic Coated Diesel Engines

1999-03-01
1999-01-0972
Thin thermal barrier ceramic coatings were applied to a standard production direct injection diesel engine. The resultant fuel economy when compared to the standard metallic engine at full load and speed (2600) was 6% better and 3.5% better at 1600 RPM. Most coated diesel engines todate have not shown significant fuel economy one way or the other. Why are the results more positive in this particular case? The reasons were late injection timing, high injection pressure with high injection rates to provide superior heat release rates with resultant lower fuel consumption. The recent introduction of the high injection pressure fuel injection system makes it possible to have these desirable heat release rates at the premixed combustion period. Of course the same injection characteristics were applied to the standard and the thin thermal barrier coating case. The thin thermal barrier coated engine displayed superior heat release rate.
Technical Paper

Effect of Cetane Number with and without Additive on Cold Startability and White Smoke Emissions in a Diesel Engine

1999-05-03
1999-01-1476
I The effect of Cetane Number (CN) of the fuel and the addition of cetane improvers on the cold starting and white smoke emissions of a diesel engine was investigated. Tests were conducted on a single-cylinder, four-stroke-cycle, air-cooled, direct-injection, stand-alone diesel engine in a cold room at ambient temperatures ranging from 25 °C to - 5 °C. Five fuels were used. The base fuel has a CN of 49.2. The CN of the base fuel was lowered to 38.7 and 30.8 by adding different amounts of aromatic hydrocarbons. Iso-octyl nitrate is added to the high aromatic fuels in order to increase their CN to 48.6 and 38.9 respectively. Comparisons are made between the five fuels to determine the effect of CN and the additive on cylinder peak pressure, heat release rate, cold start-ability, combustion instability, hydrocarbon emissions and solid and liquid particulates.
Technical Paper

Simulation of Combustion in Direct-Injection Low Swirl Heavy-Duty Type Diesel Engines

1999-03-01
1999-01-0228
A two phase, global combustion model has been developed for quiescent chamber, direct injection diesel engines. The first stage of the model is essentially a spark ignition engine flame spread model which has been adapted to account for fuel injection effects. During this stage of the combustion process, ignition and subsequent flame spread/heat release are confined to a mixing layer which has formed on the injected jet periphery during the ignition delay period. Fuel consumption rate is dictated by mixing layer dynamics, laminar flame speed, large scale turbulence intensity, and local jet penetration rate. The second stage of the model is also a time scale approach which is explicitly controlled by the global mixing rate. Fuel-air preparation occurs on a large-scale level throughout this phase of the combustion process with each mixed fuel parcel eventually burning at a characteristic time scale as dictated by the global mixing rate.
Technical Paper

A Two-Step Combustion Model of Iso-Octane for 3D CFD Combustion Simulation in SI Engines

2019-04-02
2019-01-0201
The application of Computational Fluid Dynamics (CFD) for three-dimensional (3D) combustion analysis coupled with detailed chemistry in engine development is hindered by its expensive computational cost. Chemistry computation may occupy as much as 90% of the total computational cost. In the present paper, a new two-step iso-octane combustion model was developed for spark-ignited (SI) engine to maximize computational efficiency while maintaining acceptable accuracy. Starting from the model constants of an existing global combustion model, the new model was developed using an approach based on sensitivity analysis to approximate the results of a reference skeletal mechanism. The present model involves only five species and two reactions and utilizes only one uniform set of model constants. The validation of the new model was performed using shock tube and real SI engine cases.
X